Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

4,6-Dibenzoylisophthalic acid N, N-dimethylformamide disolvate

In the title compound, $\mathrm{C}_{22} \mathrm{H}_{14} \mathrm{O}_{6} \cdot 2 \mathrm{C}_{3} \mathrm{H}_{7} \mathrm{NO}, 4,6$-dibenzoylisophthalic acid is linked to two N, N-dimethylformamide solvent molecules via $\mathrm{O}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds. An intramolecular three-centred $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bond is favoured by the syn conformation of both carboxyl groups.

Comment

4,6-Dibenzoylisophthalic acid (DBIA) and its isomer 2,5dibenzoylterephthalic acid (DBTA) can be utilized to synthesize organic semiconductors and conjugated polymers (Tonzola et al., 2003), which are of wide current interest for applications in electronic and opto-electronic devices, including light-emitting diodes (Kolosov et al., 2002), thin-film transistors, and photovoltaic cells (Antoniadis et al., 1994). We report here the crystal structure of the title compound, (I).

(I)

The molecular structure of (I) is shown in Fig. 1. The dihedral angles between rings $A(\mathrm{C} 1-\mathrm{C} 6), B(\mathrm{C} 17-\mathrm{C} 22)$ and C $(\mathrm{C} 9-\mathrm{C} 14)$ are $A / C=112.0(2)^{\circ}, B / C=74.6(3)^{\circ}$ and $A / B=$ $77.0(2)^{\circ}$. In the crystal structure, DBIA is linked to two N, N dimethylformamide (DMF) solvent molecules by $\mathrm{O}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds (Table 1), and the intramolecular bifurcated $\mathrm{C} 14-\mathrm{H} 14 A \cdots \mathrm{O} 2 / \mathrm{O} 5$ hydrogen bond (Fig. 1) stabilizes the molecular conformation. DBIA molecules are also connected to each other by $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}$ interactions, forming dimers (Fig. 2).

Experimental

Compound (I) was prepared by a method we reported recently (Liu et al., 2006). Crystals were obtained by dissolving DBIA (1.0 g , $2.67 \mathrm{mmol})$ in DMF (30 ml) and evaporating the DMF slowly at room temperature for about 120 d .

[^0]Received 17 August 2006 Accepted 26 August 2006

Key indicators

Single-crystal X-ray study
$T=298 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.006 \AA$
R factor $=0.079$
$w R$ factor $=0.193$
Data-to-parameter ratio $=15.4$
For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

Crystal data

$\mathrm{C}_{22} \mathrm{H}_{14} \mathrm{O}_{6} \cdot 2 \mathrm{C}_{3} \mathrm{H}_{7} \mathrm{NO}$
$M_{r}=520.52$
Triclinic, $P \overline{1}$
$a=9.998$ (2) \AA
$b=10.940$ (2) \AA
$c=12.577$ (3) \AA
$\alpha=98.06$ (3) ${ }^{\circ}$
$\beta=97.67$ (3) ${ }^{\circ}$
$\gamma=90.72(3)^{\circ}$

Data collection

Nonius CAD-4 diffractometer $\omega / 2 \theta$ scans
Absorption correction: ψ scan (North et al., 1968)
$T_{\text {min }}=0.831, T_{\text {max }}=0.913$
$($ expected range $=0.901-0.991)$
5284 measured reflections

Refinement

Refinement on F^{2}	H-atom parameters constrained
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.079$	$w=1 /\left[\sigma^{2}\left(F_{\mathrm{o}}^{2}\right)+(0.05 P)^{2}+P\right]$
$w R\left(F^{2}\right)=0.193$	where $P=\left(F_{\mathrm{o}}^{2}+2 F_{\mathrm{c}}^{2}\right) / 3$
$S=0.97$	$(\Delta / \sigma)_{\max }<0.001$
5284 reflections	$\Delta \rho_{\max }=0.70 \mathrm{e}^{-3}$
343 parameters	$\Delta \rho_{\min }=-0.51 \mathrm{e} \AA^{-3}$

Refinement on F^{2}
H-atom parameters constrained
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.079$
$-1 / \sigma\left(F_{\mathrm{o}}\right)+(0.05 P)^{2}+P$
$(\Delta / \sigma)_{\max }<0.001$
$\Delta \rho_{\text {max }}=0.70 \mathrm{e}^{\AA^{-3}}$
$\Delta \rho_{\min }=-0.51 \mathrm{e}^{-3}$
5284 independent reflections
2837 reflections with $I>2 \sigma(I)$
$\theta_{\text {max }}=26.0^{\circ}$
3 standard reflections
every 200 reflections
intensity decay: none

$$
V=1349.2(5) \AA^{3}
$$

$Z=2$
$D_{x}=1.281 \mathrm{Mg} \mathrm{m}^{-3}$
Mo $K \alpha$ radiation
$\mu=0.10 \mathrm{~mm}^{-1}$
$T=298 \mathrm{~K}$
Block, colourless $0.20 \times 0.20 \times 0.10 \mathrm{~mm}$

N $=0.97$ - 0.193
5284 reflections
343 parameters

Figure 1
The asymmetric unit of (I), showing the atom-numbering scheme and displacement ellipsoids at the 50% probability level. Dashed lines indicate hydrogen bonds.

Figure 2
A partial packing diagram for (I). H atoms have been omitted unless they are involved in hydrogen bonds (dashed lines).

Enraf-Nonius (1985). CAD-4 Software. Version 5.0. Enraf-Nonius, Delft, The Netherlands.
Harms, K. \& Wocadlo, S. (1995). XCAD4. University of Marburg, Germany.
Kolosov, S., Adamovich, V., Djurovich, P., Thompson, M. E. \& Adachi, C. (2002). J. Am. Chem. Soc. 124, 9945-9954.

Liu, S., Song, G.-L., Tang, J.-M., Xu, W.-K. \& Zhu, H.-J. (2006). Acta Cryst. E62, o2697-o2699.
North, A. C. T., Phillips, D. C. \& Mathews, F. S. (1968). Acta Cryst. A24, 351359.

Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.
Tonzola, C. J., Alam, M. M., Kaminsky, W. \& Jenekhe, S. A. (2003). J. Am. Chem. Soc. 125, 13548-13558.

[^0]: (C) 2006 International Union of Crystallography All rights reserved

